Signals \& Systems
Student ID Number:

Unified Engineering
Fall 2007
Quiz 4
Wednesday December 5
Total: 30/110 points
A system is described by the following differential equations:

$$
\begin{aligned}
& \dot{x}_{1}=-3 x_{1}+x_{2}+u \\
& \dot{x}_{2}=x_{1}-3 x_{2}+u .
\end{aligned}
$$

The scalar input to the system is $u(t)$. The two outputs are $y_{1}(t)=x_{1}(t)$ and $y_{2}(t)=x_{2}(t)$.
(a) $[8 \mathrm{pt}]$ What are the state-space matrices A, B, C, and D that describe this system?
(b) [6 pt] Is the system overdamped, underdamped or critically damped? Explain your answer.
(c) [8 pt] Using the state transformation

$$
\vec{x}^{\prime}=\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right],
$$

we get the transformed state-space system

$$
\begin{aligned}
\dot{\vec{x}}^{\prime} & =A^{\prime} \vec{x}^{\prime}+B^{\prime} \vec{u}, \\
\vec{y} & =C^{\prime} \vec{x}^{\prime}+D^{\prime} \vec{u} .
\end{aligned}
$$

With this choice of transformation, the matrix A^{\prime} is

$$
A^{\prime}=\left[\begin{array}{cc}
-2 & 0 \\
0 & -4
\end{array}\right]
$$

Compute the matrices B^{\prime}, C^{\prime} and D^{\prime}.
(d) $[6 \mathrm{pt}]$ Draw the block diagram of your state equations $\dot{\vec{x}}^{\prime}=A^{\prime} \vec{x}^{\prime}+B^{\prime} \vec{u}$ in the transformed state, \vec{x}^{\prime}. (Note: your block diagram does not need to show the output equation.)
(e) $[2 \mathrm{pt}]$ In one sentence, comment on our ability to control the state of this system using the given input.

Signals \& Systems Question 1
Student ID Number:

Signals \& Systems Question 1
Student ID Number:

